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Abstract—This aim of this statement is to report an expert consensus on the diagnosis and treatment of cardiac dysfunction 
in β-thalassemia major (TM). This consensus statement does not cover other hemoglobinopathies, including thalassemia 
intermedia and sickle cell anemia, in which a different spectrum of cardiovascular complications is typical. There are 
considerable uncertainties in this field, with a few randomized controlled trials relating to treatment of chronic myocardial 
siderosis but none relating to treatment of acute heart failure. The principles of diagnosis and treatment of cardiac iron 
loading in TM are directly relevant to other iron-overload conditions, including in particular Diamond-Blackfan anemia, 
sideroblastic anemia, and hereditary hemochromatosis.
Heart failure is the most common cause of death in TM and primarily results from cardiac iron accumulation. The 
diagnosis of ventricular dysfunction in TM patients differs from that in nonanemic patients because of the cardiovascular 
adaptation to chronic anemia in non–cardiac-loaded TM patients, which includes resting tachycardia, low blood pressure, 
enlarged end-diastolic volume, high ejection fraction, and high cardiac output. Chronic anemia also leads to background 
symptomatology such as dyspnea, which can mask the clinical diagnosis of cardiac dysfunction. Central to early 
identification of cardiac iron overload in TM is the estimation of cardiac iron by cardiac T2* magnetic resonance. Cardiac 
T2* <10 ms is the most important predictor of development of heart failure. Serum ferritin and liver iron concentration are 
not adequate surrogates for cardiac iron measurement. Assessment of cardiac function by noninvasive techniques can also 
be valuable clinically, but serial measurements to establish trends are usually required because interpretation of single 
absolute values is complicated by the abnormal cardiovascular hemodynamics in TM and measurement imprecision.
Acute decompensated heart failure is a medical emergency and requires urgent consultation with a center with expertise in 
its management. The first principle of management of acute heart failure is control of cardiac toxicity related to free iron 
by urgent commencement of a continuous, uninterrupted infusion of high-dose intravenous deferoxamine, augmented by 
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oral deferiprone. Considerable care is required to not exacerbate cardiovascular problems from overuse of diuretics or 
inotropes because of the unusual loading conditions in TM.
The current knowledge on the efficacy of removal of cardiac iron by the 3 commercially available iron chelators is summarized 
for cardiac iron overload without overt cardiac dysfunction. Evidence from well-conducted randomized controlled trials shows 
superior efficacy of deferiprone versus deferoxamine, the superiority of combined deferiprone with deferoxamine versus 
deferoxamine alone, and the equivalence of deferasirox versus deferoxamine. (Circulation. 2013;128:281-308.)

Key Words: AHA Scientific Statement ◼ CT and MRI ◼ heart failure ◼ other heart failure ◼ other treatment  
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1. Introduction
1.1 Need for Consensus Document
Heart disease has been the predominant cause of death in 
β-thalassemia major (TM) in cohort studies.1–4 Significant 
advances in the identification and risk stratification of 
patients with myocardial siderosis have occurred since 2001 
with magnetic resonance (MR) technology,5–7 and with this, 
it has been possible to focus on the heart as the target lethal 
organ in TM and tailor chelation treatment and prevention 
accordingly.8–10 There is evidence that this approach has con-
tributed to the significant reduction in cardiac mortality in 
TM.3,11–14 These advances give room for a consensus docu-
ment in a rapidly evolving field in both diagnostics and thera-
peutics. The aim of the present document is to bring together 
broad-ranging cardiological and hematologic experience in 
the heart and heart failure (HF) in TM, summarize how to 
measure cardiac iron and function, identify and treat patients 
at high risk to prevent HF, and diagnose and treat HF. A pri-
mary premise of this review document is that cardiac disease 
is easier and safer to treat at an early stage rather than a late 
stage when the hazard of death is high. We build on previous, 
more focused summary reviews and consensus statements on 
the heart in TM15–20 and build a consensus of the assessment 
of cardiac function and treatment of HF in TM.

2. Fundamentals of TM and the Heart

2.1 Iron-Loading Conditions

2.1.1 β-Thalassemia Major
TM is a genetic condition with severe reduction or absent 
production of the β-globin chain constituent of hemoglobin 
(Hb) A. This results in ineffective erythropoiesis caused by 
an excess of α-globin chains and profound anemia that is 
life-threatening from ≈1 to 2 years of age. Blood transfusions 
are required lifelong; however, the iron load of ≈200 mg per 
unit combined with mildly increased gastrointestinal iron 
uptake related to hepcidin suppression21 increases total body 
iron, which leads to a requirement for lifelong iron chelation 
treatment to prevent or reverse iron-related complications. A 
broad phenotypic characterization of TM is the requirement 
for >8 transfusion events per year (may have multiple units 
at each transfusion) in an adult aged >16 years.22 TM varies 
greatly in frequency around the world, being most prevalent in 
areas with endemic population exposure to malaria (Asia, the 
Middle East, Mediterranean Europe), and this is considered to 

have created positive pressure for the accumulation of hemo-
globin genetic mutations that in heterozygote form provide 
innate resistance to parasitization by plasmodia of red cells. 
In countries with no historical exposure to endemic malaria, 
TM occurs through immigration. Thus, the United States and 
the United Kingdom each have <1000 TM patients, whereas 
Indonesia has many thousands of registered TM patients with 
likely high levels of underreporting.

2.1.2 Thalassemia Intermedia
The cardiovascular manifestations of thalassemia intermedia 
are beyond the scope of this document but typically include 
a greater propensity to pulmonary hypertension and throm-
bosis.23,24 In thalassemia intermedia, there is a very variable 
increase in gastrointestinal iron uptake. Patients with thal-
assemia intermedia generally do not require transfusions to 
maintain the hemoglobin level and form part of the spec-
trum of non–transfusion-dependent thalassemia, which also 
includes other genotypes, such as some patients with E-β-
thalassemia and HbH disease. As patients with thalassemia 
intermedia get older, however, they may require transfusions 
to prevent complications, including those in the cardiovascu-
lar system. This leads to iron loading and an increased require-
ment for iron chelation.

2.1.3 Sickle Cell Anemia
The cardiovascular manifestations of sickle cell anemia are 
beyond the scope of this document but typically include 
a greater propensity to sickle cell crisis (severe general-
ized attacks of pain), as well as pulmonary hypertension, 
thrombosis, and stroke.25 Patients with sickle cell anemia 
are increasingly being transfused to prevent cardiovascular 
complications, which leads to iron loading and an increased 
requirement for iron chelation. Although the risks of extra-
hepatic iron deposition and organ toxicity are lower in 
sickle cell anemia than in other transfusional anemias, they 
increase proportionally to the duration of chronic transfu-
sion therapy.

2.1.4 Other Iron-Loading Conditions
There are other causes of iron overload, including conditions 
such as hereditary hemochromatosis, Diamond-Blackfan 
anemia, sideroblastic anemia, myelodysplasia, and 
α-thalassemia, for which these guidelines are relevant but 
for which the evidence base is lower than for TM. Patients 
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with transfusion-dependent Diamond-Blackfan anemia and 
sideroblastic anemia appear to be at particularly high risk for 
extrahepatic iron deposition and toxicity.

2.2 Aims of Transfusion in TM
The main aim of blood transfusion in TM, beyond prolonging life, 
is the suppression of ineffective erythropoiesis. To achieve this, 
clinical experience and guidelines26 suggest that maintaining a pre-
transfusion hemoglobin level of 9 to 10 g/dL with a posttransfu-
sion hemoglobin level of 13 to 14 g/dL leads to a balance between 
minimization of iron loading and maximization of symptom relief. 
Transfusions reduce the expansion of blood volume seen in chronic 
anemia, which is a driver of increased cardiac index.

2.3 Cause of Death in TM
Before the introduction of chelation, the most common cause 
of death in TM patients receiving regular transfusions in the 
1960s was HF.27 In the era of deferoxamine iron chelation, 
mortality was postponed considerably, but mortality from car-
diac iron overload continued to dominate the causes of death, 
accounting for ≈70% of cases.1,2,28,29

2.4 Age at Cardiac Death
The age of cardiac death in TM depends on a number of fac-
tors, including access to transfusions and chelation. In trans-
fused but unchelated patients, the typical age at death was 10 
years, primarily of cardiac causes.30 With the introduction of 
deferoxamine treatment in the late 1970s, the median age of 
survival improved and was strongly dependent on birth cohort. 
In the United Kingdom, by the year 2000, the median age at 
death was 35 years.2 Improvements in survival with deferox-
amine treatment by later birth cohort have been confirmed in 
other countries.3,31,32

2.5 Frequency of Cardiac Iron Overload
Samples of TM patients in a number of countries across the 
world have shown cardiac iron overload to be common using 
definitions from T2* cardiovascular magnetic resonance 
(CMR) of severe cardiac iron loading of <10 ms and mild to 

moderate cardiac iron loading of 10 to 20 ms (refer to Section 
3.3 for measurement of iron by T2* CMR; Table 1).

2.6 Frequency of Cardiomyopathy
There are 2 ways by which cardiomyopathy prevalence can be 
measured. The first is by prevalence of the clinical syndrome 
of HF. The prevalence varies by patient age and by year of 
birth. In a cohort of 97 patients born before 1976, 37% had 
heart disease, as defined by need for inotropic or antiarrhyth-
mic medications.28 In a US survey in 2004, the number of TM 
patients of all ages receiving cardiac medication was found 
to be 10% (35/341).22 In an Italian cohort, the prevalence of 
HF by 15 years of age was 5% in patients born between 1970 
and 1974 and 2% in those born between 1980 and 1984.42 In 
a worldwide survey conducted in 2012, the incidence of HF 
at first T2* scan was 3.1% (107/3445).41 Alternatively, the 
prevalence of detectable left ventricular (LV) dysfunction is 
higher than the prevalence of clinically manifest HF. In one 
study of 167 Italian patients, LV dysfunction was found in 19 
patients (11.4%).38 Another more recent Italian study found a 
high prevalence of LV dysfunction of 19%. This higher figure 
may represent the high prevalence of hepatitis C infection43 
and aging of the Italian TM population compared with clinical 
experience elsewhere.

2.7 HF and Survival
The natural history and clinical course in untreated patients 
is one of clinically silent myocardial iron accumulation for 
many years, followed by malignant arrhythmias and acutely 
impaired myocardial function in early adulthood.27,44 The 
time from symptom appearance to death was short, typically 
approximately 6 to 12 months. With improved access to 
iron chelation in the 1970s, life expectancy improved, with 
patients expected to survive to their mid-30s28,31,45; however, 
5-year survival for patients presenting in HF (ages 24±5 
years) was only 48%.46 These data were disconcerting given 
the ample evidence that intensive iron chelation therapy 
could completely restore cardiac function in most patients 
with preclinical dysfunction and some with overt HF.47–49 The 
clearance of cardiac iron substantially lagged improvements 
in systolic function,47 which explains the high risk of relapse 
observed with premature termination of intensive chelation 
therapy.48,49 Recognition of severe cardiac siderosis by T2* 
CMR and intervention with suitable treatment, before the 
onset of symptomatic HF, is associated with improvements 
in ventricular function.50 As a result, recent improvements in 
life expectancy for TM patients in the United Kingdom can 
be explained by the increasing availability of T2* CMR and 
earlier escalation of therapy.11,51 The acute mortality of New 
York Heart Association stage IV HF in thalassemia remains 
high (probably in excess of 50% in hospital mortality) 
simply because support for the heart and other failing organs, 
especially the kidneys and liver, often cannot be continued long 
enough for iron chelation to stabilize myocardial function, 
a process that may take many months. Nonetheless, futility 
cannot be predicted, and intensive chelation and prolonged 
cardiopulmonary support should be attempted in all patients 
with iron cardiomyopathy, because survival to an excellent 

Table 1. Frequency of Cardiac Iron Overload

Country
Sample Size,  

n

Frequency, %

Severe: 
T2* <10 ms

Mild to Moderate: 
T2* >10–20 ms

Normal: 
T2* >20 ms

United Kingdom5 109 20 43 37

Hong Kong33 180 26 24 50

Turkey34 28 46 39 14

Australia35 30 37 27 37

Oman36 81 24 22 54

United States37 141 13 21 66

Italy38 167 13 (<8 ms) 52 (8–20 ms) 35

Italy39 220 30% <20 ms 66

Greece40 159 68% <20 ms 32

Worldwide 
survey41

3445 20 22 58
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quality of life may be achieved in a significant proportion of 
patients.

2.8 Age, Transfusions, and Cardiac Loading
There are few data relating the age of onset of cardiac iron 
loading with age and transfusion history. Among patients 
with myelodysplasia who received transfusions but no che-
lation, those with cardiac T2* <20 ms had received >100 U 
of blood.52 In children with hemoglobinopathy who received 
transfusion and chelation, the cardiac T2* was <20 ms only 
after 10 years of age.53,54 However, occasional younger onset 
of cardiac iron, as young as 7 years, has been recorded in TM, 
especially when access to chelation is limited.55

2.9 Cardiac Uptake of Iron
There is an incomplete understanding of iron loading into the 
heart, and no studies have been performed in humans. Cell 
and animal studies have indicated that cardiac entry of iron 
is mediated by the divalent metal transporter 1 (DMT1) and 
L-type calcium channels,56,57 as well as the T-type calcium 
channels,58 although another pathway may be involved for fer-
ric (Fe)3+ ions.59 Non–transferrin-bound iron uptake has been 
shown to be rapid in isolated cardiomyocytes.60 Nifedipine 
was shown to hinder iron uptake into cardiac cells, and this 
therapeutic possibility is being explored in a pilot study in 
humans.61 Anecdotal evidence from individual cases62 and 
family studies of discrepant cardiac iron loading, as well as 
evidence from a worldwide survey of cardiac T2*,41 suggests 
that genetic modifiers of cardiac iron uptake may be present 
and clinically relevant. The only genetic influence known to 
date is the glutathione S-transferase-M1 (GSTM1) null gen-
otype, which was associated with an increased level of car-
diac iron.63,64 GSTM1 has also been implicated in liver iron 
loading.65

2.10 Cardiac Pathophysiology in TM
In untreated TM, chronic profound anemia causes high–car-
diac-output HF and is fatal at a young age. The early start 
of regular transfusion prevents early cardiac death and other 
complications of anemia but results in progressive iron accu-
mulation toxicity. In the heart, increased levels of intracellu-
lar free iron are toxic through a number of mechanisms,66,67 
including (1) damage to membranes by lipid peroxidation; (2) 
damage to mitochondria and the respiratory enzyme chain68,69; 
(3) interference with electrical function, including ryanodine 
release channel interference70,71; (4) promotion of cardiac 
fibrosis, which was prominently reported in early autopsy 
studies,72 although it is rare with greater access to chelation73; 
and (5) altered gene expression.74

2.11 Adaptive Cardiac Physiology in TM in Absence 
of Cardiac Iron Loading
Because hemoglobin is responsible for oxygen transport, 
to preserve oxygen delivery, the body compensates for low 
hemoglobin levels by increasing the cardiac output and car-
diac index, which is the cardiac output normalized to body sur-
face area, up to 60% compared with normal control subjects. 
The increased cardiac index is usually achieved by an increase 

in end-diastolic volume, stroke volume, and heart rate. TM 
therefore represents a chronic high-output state produced by 
volume-loaded ventricles (high preload). To maintain normal 
systemic blood pressure in the presence of high cardiac out-
put, the body has to lower the systemic vascular resistance 
through peripheral arterial vasodilation, which leads to wide 
pulse pressures and low diastolic blood pressure.70,75,76 The 
increased cardiac output may lead to flow murmurs on car-
diac auscultation. The ejection fraction is increased because 
of decreased afterload and increased preload.

2.12 Clinical Cardiac Manifestations of  
Iron Overload
In the absence of regular iron chelation, historical series show 
a broad range of cardiac complications, including pericarditis, 
myocarditis, HF, and arrhythmias.27,72 In the modern era, 
with iron chelation treatment, the clinical manifestation of 
cardiac disease has changed, and pericarditis and myocarditis 
are now rare. Historical postmortem studies showed severe 
replacement cardiac fibrosis,27,72 but this is now rare in more 
modern cohorts of patients dying of HF.73 More minor patches 
of myocardial fibrosis have been identified in vivo with late 
gadolinium-enhancement CMR in Italian patients with TM,77 
but this has not been reproduced in the United Kingdom.78 
This difference probably results from higher levels of 
myocarditis resulting from hepatitis C infection in Italy.79 
The most common clinical manifestations of cardiac disease 
are now dilated cardiomyopathy (with restrictive features) 
and arrhythmia, predominantly atrial fibrillation (AF). In 
severe cardiac iron loading, ventricular arrhythmias become 
more common, and ectopic atrial tachycardia, flutter, and 
chaotic atrial rhythms may also occur. Recent autopsy data 
show that iron deposition in the myocardium in TM patients 
occurs preferentially in the subepicardium, no systematic 
variation occurs between myocardial regions, and iron in the 
interventricular septum is highly representative of total cardiac 
iron.7 Some authors advocate use of multislice T2* data to 
characterize heterogeneity in myocardial iron distribution, but 
this technique requires corrections for large, patient-specific 
magnetic susceptibility artifacts. Although global sampling 
of cardiac T2* potentially offers a more complete picture of 
cardiac iron burden, anatomic correlations for this approach 
are lacking.39 Other relevant iron-overload complications 
that may affect the heart include hypothyroidism, diabetes 
mellitus, hypoadrenalism, growth hormone deficiency, and 
hypoparathyroidism.

Changes in the heart in addition to ventricular systolic 
impairment include the following: (1) Decreased left atrial 
function, which is attributable to ventricular stiffening or 
direct atrial toxicity. Limited data suggest that decreased 
left atrial function is a more sensitive marker of iron toxicity 
than left ventricular ejection fraction (LVEF),76,80 but further 
data are needed. (2) Impaired right ventricular (RV) func-
tion, which may be caused by the increased vulnerability of 
the RV to the effects of iron deposition because of its thin 
wall. Tissue Doppler imaging velocity and strain imaging 
suggest early RV impairment in iron overload.81 (3) Impaired 
endothelial function in iron overload.9,82–84 Improvement in 
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endothelial function has been documented with deferiprone9 
and deferasirox.83 (4) Impaired diastolic function as shown by 
tissue Doppler imaging has been reported with cardiac iron 
overload, but only in small studies, and its low sensitivity lim-
its its use for diagnosis and as a prognostic tool.85,86 Impaired 
diastolic function shown by CMR also had low sensitivity for 
identification of cardiac iron loading.87

2.13 Vascular Effects of Iron Loading
Patients with TM and normal cardiac iron levels documented 
by T2* and no clinical signs of cardiac dysfunction have 
increased aortic stiffness as assessed by pulse-wave velocity 
(carotid-femoral) and augmentation index compared with nor-
mal control subjects.88

3. Diagnostic Strategies for  
   Cardiac Involvement in TM

3.1 Basic Tests
New-onset electrocardiographic abnormalities are usually 
evident in TM patients with HF89 and may include supraven-
tricular arrhythmias, electrocardiographic findings that sug-
gest right-sided heart involvement (S

1
Q

3
 pattern and right-axis 

deviation), new-onset T-wave inversion beyond lead V
1
, and 

a consistent decrease in QRS height. In patients without HF, 
an abnormal ECG was found in 46% (T-wave abnormali-
ties in 34% and right bundle-branch block in 12%), which 
was weakly associated with lower myocardial T2* and mild 
myocardial fibrosis, probably from hepatitis C myocarditis.90 
Electrocardiographic changes most specifically associated 
with cardiac iron include repolarization abnormalities and 
relative bradycardia.91 It is not known whether progressive 
alterations in electrocardiographic tracings occur before HF 
develops.

The chest radiograph may show cardiomegaly caused by 
the hyperdynamic circulation, signs of congestive HF, and, 
on occasion, extramedullary hematopoiesis as indicated 
by the lobulated soft tissue opacities of the ribs anteriorly 
and posteriorly. N-terminal pro-B-type natriuretic peptide 
(NT-proBNP) and B-type natriuretic peptide (BNP) are sig-
nificantly increased in documented LV diastolic dysfunction, 
whereas NT-proBNP appears to have better predictive value 
in detecting latent LV diastolic dysfunction.92 However, one 
study showed poor correlation of BNP against low myocar-
dial T2*, which predicts future HF.50 One possible explanation 
for this finding is cardiac endocrinopathy and reduced BNP 
secretion caused by iron toxicity. More recent data suggest 
that NT-proBNP levels may be useful,93 and further studies 
are needed.

3.2 Noninvasive Techniques to Measure  
Cardiac Function

3.2.1 Echocardiography
A number of factors affect cardiac function measurements by 
different techniques, and this makes comparisons between tech-
niques and different laboratories difficult.94 Echocardiography 
is a very useful cardiac examination because its application is 
widespread, safe, economical, and routine in clinical practice; 

however, image acquisition depends on the operator and the 
availability of good acoustic windows. Reproducibility is 
reasonable in normal ventricles, but the quantification of vol-
umes and mass relies on geometric assumptions that do not 
apply in ventricles undergoing asymmetrical cardiac remod-
eling, such as in cardiomyopathy,95 and measurements show 
significant interobserver variability. In a small study of 36 
patients, a resting LVEF <60% by echocardiography corre-
lated with increased cardiac mortality over a 12-year period.96 
Echocardiography provides less accurate quantification than 
CMR, and accuracy decreases with worsening LV function as 
geometric assumptions lose validity. In addition, typical echo-
cardiography measurements include the papillary muscles in 
the blood pool, which leads to systematic overestimation of 
volumes. Echocardiography is the preferred second-line tech-
nique after CMR, and 3-dimensional is preferable to 2-dimen-
sional because of improved longitudinal reproducibility. It 
is important that echocardiography be performed in experi-
enced centers that are used to scanning TM patients in large 
numbers. Echocardiography is the easiest way to evaluate the 
diastolic LV function/dysfunction in patients with TM with 
published guidelines.97

3.2.2 Radionuclide Ventriculography
Radionuclide ventriculography during exercise is reported as 
a sensitive technique for detecting preclinical myocardial dys-
function in patients with systemic iron overload.98 However, 
its use is limited in the current era because of concerns about 
radiation dose in young people, considerable intercenter vari-
ation in normal values of ejection fraction related to differ-
ences in background radiation–subtraction techniques, and the 
availability of other techniques such as echocardiography and 
CMR, which are usually preferred.

3.2.3 Cardiovascular Magnetic Resonance
CMR is also free of ionizing radiation, noninvasive, and 
highly reliable. In addition, CMR is independent of geometric 
assumptions for assessment of LV volumes and function and 
has been shown to be accurate and reproducible. However, it 
is more expensive than echocardiography, is performed in a 
claustrophobic environment, and is limited in patients with 
cardiac devices (although CMR-compatible devices are now 
available). Despite the special expertise required to perform 
and interpret CMR, it is considered the “gold standard” today 
for the measurement of all LV and RV indexes. With the 
introduction in recent years of the steady-state free precession 
technique with much improved blood-myocardium contrast, 
faster acquisition, and improved temporal resolution of the 
cine images, the image quality is superior to the spoiled 
gradient echo sequences, which are more of a historical issue 
at this point. Steady-state free precession end-expiratory 
breath-hold cines should be acquired in the vertical and 
horizontal long-axis planes, with subsequent contiguous 
short-axis cines from the atrioventricular ring to the apex. 
LV mass should be calculated from the end-diastolic frames 
after the epicardial and endocardial borders of the LV are 
delineated and should include the papillary muscles. End-
systolic and end-diastolic volumes are best calculated from 
the LV volume-time curves generated from all frames of 
all cines, should exclude the papillary muscles, and should 
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model LV blood pool changes from systolic valve descent. 
Such rigorously derived CMR cardiac volumes have the 
benefit of having recognized normalized values for sex, body 
surface area, and age for both the LV99 and the RV.100 These 
covariates have substantial impact on the normal ranges. 
However, many CMR analysis software packages do not have 
this full modeling capability, and in that case, normal values 
appropriate to the software should be used. CMR is more 
reproducible than other techniques over time101,102; therefore, 
it is preferred for follow-up of patients over time when it is 
available. Finally, it is important to compare normal values for 
LV103 and RV104 function with values obtained in nonanemic 
TM patients to prevent misdiagnosis of abnormality, as 
detailed below. Such comparisons are now also available 
for children.105,106 A further value of CMR is related to 
the use of late gadolinium enhancement, which identifies 
myocardial replacement fibrosis. This can be useful to identify 
myocarditis and myocardial infarction, which are uncommon 
differential diagnoses in HF in TM patients.107 CMR with late 
gadolinium enhancement should be considered in any patient 
who has a positive test result for hepatitis C, has abnormal 
cardiac function in the absence of cardiac iron, or has other 
known cardiovascular risk factors, such as chronic diabetes 
mellitus. Diastolic cardiac function is measured in clinical 
practice by echocardiography, and CMR is not generally used 
for this assessment despite the fact that it provides absolute 
peak filling rates from the volume-time curves108 that are 
at higher spatial resolution than provided by radionuclide 
ventriculography. Performance of CMR requires training and 
experience to obtain results of the required quality, as detailed 
in guidelines.109,110

3.2.4 Cardiac Computed Tomography and Exercise Testing
There are few data on the use of cardiac computed tomogra-
phy in TM, but it is a fast technique to assess cardiac func-
tion,111 and liver attenuation correlates with MR-derived 
liver iron concentration, but only at moderately to severely 
increased levels of iron in the liver.112 No significant data exist 
on measurement of cardiac iron by computed tomography. 
β-Blockers are generally used as premedication, which can 
affect the functional analysis, and radiation exposure is sig-
nificant with repeated use. Exercise stress testing might be 
considered useful to unmask subclinical LV dysfunction in 
TM, but in practice, it appears to have limited value. Exercise 
capability is affected by chronic anemia, the typical small 
body habitus of TM patients, and other factors.

3.3 T2* CMR Measurement of Cardiac Iron
Myocardial iron deposition can be quantified reproducibly 
with myocardial T2*,5,113–115 a relaxation parameter that arises 
principally from local magnetic field inhomogeneities that are 
increased with iron deposition. T2* is the time taken for decay 
of the myocardial signal by 63% and is measured in milli-
seconds. T2* is related to T2 by summation of tissue relax-
ation (T2) and magnetic inhomogeneity, known as T2 prime 
(T2′), in the form 1/T2*=1/T2+1/T2′. In clinical medicine, it 
is usual to use these decay times to assess magnetic relax-
ation, but basic science–based investigations typically use 

the rate of relaxation (R), and this relation can be rewritten 
as R2*=R2+R2′, with the units of measurement being inverse 
seconds (s−1).

As myocardial stores increase in the heart, ferritin break-
down increases into particulate hemosiderin, which is a form of 
ferrihydrite (hydrated iron oxide). The hemosiderin to ferritin 
ratio is significantly higher in cardiac siderosis than in normal 
hearts.116 This disrupts the local magnetic field homogeneity, 
causing reduced T2* values in inverse relation to iron concen-
tration. Iron that is safely stored in ferritin or hemosiderin is 
nontoxic, yielding hearts with low T2* and normal function; 
however, high iron stores predispose patients to development 
of cardiac dysfunction in the future.5,38 An improvement in 
myocardial T2* resulted in improvement in LVEF in observa-
tional, prospective, and randomized controlled studies of iron 
chelation in thalassemia patients.8,9 Myocardial iron deposi-
tion is also strongly associated with RV dysfunction, which 
mirrors the decrease in LV function seen with worsening car-
diac iron loading and decreasing T2*.117 Further studies are 
required to determine the relative importance of RV function 
compared with LV function and establish whether novel treat-
ment strategies targeted to the RV may prove useful.

For measurements of myocardial T2*, imaging of a single 
short-axis mid-LV slice is performed at multiple separate 
echo times to measure the signal decay of the myocardium. 
Gradient-echo T2* CMR is the preferred technique 
rather than a spin-echo T2 sequence because of its greater 
sensitivity to iron deposition and lower sensitivity to motion. 
The first described method required multiple separate image 
acquisitions, each of which required a breath hold.5 This was 
time consuming and prone to artifacts that made it difficult to 
assess the exact myocardial borders with longer echo times, 
and it created problems with image registration between the 
images. A multiecho sequence is now standard, because this 
allows the acquisition of a single short-axis midventricular 
slice at multiple echo times in a single breath hold.118 This 
also has the advantage of T1 independence because of the 
constant repetition time between all echo times in contrast 
to the lengthening repetition time with increasing echo time 
in the multiple breath-hold T2* measuring sequence. A 
gating delay of 0 ms after the R wave is chosen to obtain 
myocardial images in a consistent position in the cardiac 
cycle irrespective of the heart rate. The most recent technical 
improvement in the T2* sequence has been the development 
of the black-blood sequence.119,120 This sequence greatly 
reduces blood signal, which significantly reduces the blood 
artifact propagating in the phase-encoding direction that 
typically spreads across the interventricular septum. This 
reduces measurement variability. A reproducible multislice 
T2* sequence has been reported,121 but no clinical advantage 
of this more complex protocol has been demonstrated. In 
particular, the T2* and iron concentration in the septum 
have been shown to be highly representative of mean total 
cardiac iron concentration,7,122,123 and the variation in iron 
between ventricular myocardial segments appears clinically 
insignificant.7

For analysis of the images, software that is clinically 
validated for this application should be used. Such soft-
ware incorporates safeguards against incorrect handling and 
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interpretation of the data, which can have clinical implica-
tions.124 A full-thickness region of interest is measured in the 
LV myocardium that encompasses both epicardial and endo-
cardial borders. This is best located in the interventricular sep-
tum and distant from the superior and inferior cardiac veins, 
which can cause susceptibility artifacts and falsely lower the 
T2* measurement.

Currently, all T2* MR measurements have been validated at 
a field strength of 1.5 T. Although 3T scanners are now com-
monly installed, there is very little clinical experience of their 
use in TM. T2* values at 3T are shorter than at 1.5 T,125,126 and 
the potential for artifacts is greater. In view of the importance 
of the measurement of myocardial T2* and the very limited 
clinical experience at 3T, we recommend that all clinical T2* 
MR be performed at 1.5 T.

3.4 Normal Ranges in TM
In healthy, nonanemic subjects, LV and RV volumes and func-
tion (systolic and diastolic) vary with sex, age, and body sur-
face area. Identification of early abnormality requires rigorous 
analysis and appropriate reference ranges that normalize for 
all 3 variables. These ranges are available in both tabular and 
graphic form for analysis, including papillary muscles as 
myocardium and modeling for systolic valve descent, and are 
of significant clinical and research utility for the correct and 
accurate interpretation of CMR studies.99,100 Values for young 
patients are also available.105,106

In TM patients without cardiac iron overload, LV end-
diastolic volume is increased and LV end-systolic volume 
is decreased, which leads to increased LV stroke volume, 
LVEF, and cardiac output compared with healthy control 
subjects after normalization for body surface area.103 The 
hyperdynamic circulation also leads to an increased LV 
mass. The same is true for the RV indexes: RV stroke volume 
and cardiac output are higher, and RV ejection fraction is 
also higher, mostly secondary to increased RV end-diastolic 
volume compared with healthy, nonanemic control sub-
jects.104 The observed differences in LV indexes seen in TM 
patients without iron overload are more pronounced than the 
RV indexes compared with healthy, nonanemic control sub-
jects. It is important to use the “normal for TM” ranges for 
TM patients, because this may enhance diagnostic accuracy 
for detection of cardiomyopathy.

4. Treatment of TM: The Iron Chelators
4.1 Basic Chelation Principles
Iron has 6 electrochemical coordination sites that need to be 
tightly bound by an iron chelator to block the ability of the iron 
ions to catalyze redox reactions and to allow efficient trans-
port and excretion without iron redistribution. Iron chelators 
should reduce tissue iron levels, prevent excessive organ iron 
accumulation, and neutralize toxic labile iron pools. Based on 
the number of the coordination sites, iron ligands are termed 
hexadentate, tridentate, and bidentate. Denticity is directly 
related to the molecular weight: Hexadentate chelators have 
a higher molecular weight than tridentate and bidentate mol-
ecules. However, diffusion through biological membranes and 

hence absorption from the gastrointestinal tract and cellular 
penetration are governed not only by molecular size but also 
by lipophilicity and net molecular charge.127 Selectivity and 
affinity for the ferric (Fe)3+ oxidation state are important char-
acteristics of an iron chelator. These properties reduce the che-
lation of other biologically important bivalent metals, such as 
copper and zinc, whereas the effect on nonessential trivalent 
cations, such as aluminum and gallium, remains negligible. 
Under biological conditions, the affinity of chelators for iron 
and the stability of ligand-metal complexes is expressed as 
pF3+ value, that is, the negative logarithm of the concentration 
of the free Fe,3+ measured in a solution of 10 μmol/L ligand 
and 1 μmol/L Fe3+ at pH 7.4. The larger the pF3+, the higher 
the stability of the ligand-metal complex. There are 3 com-
mercially available iron chelators, each with very different 
properties (Table 2).

4.2 Deferoxamine
Deferoxamine was the first approved iron chelator to be intro-
duced into clinical use in the 1960s. It is a hexadentate ligand 
that binds to iron in a 1:1 molar ratio. Deferoxamine is not 
absorbed effectively by the gastrointestinal tract and must be 
administered parenterally. Its plasma half-life is very short at 
≈20 minutes128; therefore, the drug is usually given as a 10% 
solution subcutaneously by use of a small portable pump. When 
intensive chelation is needed, deferoxamine can be given as 
a continuous intravenous infusion. Parenteral administration 
of deferoxamine is cumbersome, which can adversely affect 
adherence to treatment. The most common deferoxamine side 
effects are local infusion-site reactions (induration, erythema, 
swelling, and itch). Serious adverse events have occurred, par-
ticularly in patients taking higher deferoxamine doses relative 
to their iron burden.129,130 Ophthalmologic and audiological 
tests and growth monitoring are recommended. Yersinia and 
Klebsiella infections have been reported in patients treated 
with deferoxamine.131,132 Renal toxicity and acute respiratory 
distress syndrome, particularly after excessively high intrave-
nous doses, have been described.133

4.3 Deferiprone
Deferiprone is a bidentate ligand that binds to iron in a 3:1 
molar ratio.134 Deferiprone is absorbed rapidly from the 
upper gastrointestinal tract, and the peak serum concentration 
occurs 45 to 60 minutes after oral ingestion in fasted patients 
and up to 2 hours in fed patients.135 Deferiprone is mainly 
metabolized to a glucuronide conjugate that lacks iron-
binding capability. Given its relatively short plasma half-
life of 1.5 to 2.5 hours, the drug is usually administered 3 
times daily. Free deferiprone, glucuronide metabolite, and 
the iron-deferiprone complex are mainly excreted renally.135 
The drug is available as tablets or as oral solution. The most 
common adverse reactions associated with deferiprone are 
gastrointestinal symptoms (nausea, vomiting, abdominal 
pain) and a transient increase of liver enzymes.134 Arthropathy 
may occur, ranging from mild pain in 1 or more joints (usually 
knee) to severe arthritis, and low plasma zinc levels have been 
reported in a minority of patients. Agranulocytosis (absolute 
neutrophil count <0.5×109/L), the most serious adverse 
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reaction with deferiprone, has been reported in ≈1% of treated 
patients (0.6 cases per 100 patient-years of treatment). A 
less severe form of neutropenia (absolute neutrophil count 
0.5–1.5×109/L) has been reported in ≈5% of patients treated 
with deferiprone, particularly nonsplenectomized patients 
and in association with viral infections.134 The neutrophil 
count should therefore be monitored every week to detect 
early signs of agranulocytosis. Temporary discontinuation or 
dose adjustment may be beneficial for the common adverse 
events, whereas in the case of agranulocytosis or neutropenia, 
the drug should be stopped immediately, and patients should 
contact their physician. Patients should also be advised to 
report immediately to their physician any symptoms indicative 
of infection, such as fever, sore throat, and flulike symptoms.

4.4 Deferasirox
Deferasirox is an orally active tridentate chelator that binds 
iron in a 2:1 molar ratio. Single oral doses of deferasirox are 
absorbed rapidly, achieving peak plasma levels within 1 to 
3 hours after administration; with a mean elimination half-
life of 8 to 16 hours, plasma levels are maintained within a 
therapeutic range over 24 hours, which supports once-daily 
administration.136 Feces are the main route of excretion.137 
Deferasirox is available as orally dispersible tablets that are 
dissolved in water or juice and given at least 30 minutes 
before a meal. Deferasirox has a clinically manageable safety 
profile with appropriate patient monitoring. The most com-
mon adverse events are mild to moderate transient gastroin-
testinal disturbances (nausea, vomiting, diarrhea, abdominal 
pain), diffuse maculopapular skin rash, and increased alanine 
aminotransferase and serum creatinine levels.136 Such events 
rarely require discontinuation of treatment but are frequently 
resolved either spontaneously or after dose interruption/
adjustment. Safety data on long-term usage accord with short-
term data.138 Mild elevations in serum creatinine levels occur 
in ≈33% of patients, but few experience elevations beyond the 
normal range.139 Although the changes in serum creatinine 
are usually nonprogressive, deferasirox is currently contra-
indicated in patients with creatinine clearance <40 mL/min 
or serum creatinine greater than twice the age-appropriate 
normal threshold.140 Several cases of Fanconi syndrome have 
been reported with deferasirox.140 In some cases, overdosage 
related to low total iron burden has been reported. Cases were 

reversible with cessation of the drug. Auditory and ocular 
toxicities occur in ≈1% of patients treated with deferasirox. 
Patient monitoring, including tests of renal and hepatic func-
tion, is recommended for all patients receiving deferasirox.

5. Diagnosis of HF in TM
5.1 Diagnosis of HF With Impaired Ventricular 
Function in Nonanemic Subjects
HF can be defined as an abnormality of cardiac structure or 
function that leads to failure of the heart to deliver oxygen at a 
rate commensurate with the requirements of the metabolizing 
tissues, despite normal filling pressures (or only at the expense 
of increased filling pressures).141 For the purposes of these 
guidelines, HF is defined clinically as a syndrome in which 
patients have typical symptoms (eg, breathlessness, ankle 
swelling, and fatigue) and signs (eg, elevated jugular venous 
pressure, pulmonary crackles, and displaced apex beat) result-
ing from an abnormality of cardiac structure or function.

5.2 Diagnosis of HF in TM
Many symptoms typically present in HF are common in 
anemia, which can make the diagnosis of HF difficult to make 
on clinical grounds alone. More reliable clinical markers for the 
development of HF are changes in symptoms, such as increased 
exertional dyspnea. Additional symptoms that are prevalent in 
the TM population relate to liver congestion (abdominal or back 
pain and nausea) and dizziness/presyncope (arrhythmias).142 
Other symptoms include failure to tolerate standard transfusions. 
Orthopnea and peripheral edema are late symptoms. The 
absence of the clinical features of HF (such as hepatomegaly, 
peripheral edema, raised jugular venous pressure, and lung 
crackles) does not exclude severe cardiac impairment. The 
classic signs of HF may appear late, and this has the potential to 
delay diagnosis and appropriate intensification of chelation.142 
As in conventional HF, blood tests are frequently abnormal. 
Liver function tests and serum ferritin may be raised because 
of congestion. An elevated BNP is expected but is a late sign.50

6. Prediction of HF in TM
The association between biomarkers and HF can be studied 
through cross-sectional studies that show the contemporaneous 

Table 2. Main Features of the Iron Chelators

Drug FDA Approved EU Approved Route
Typical Chronic Dosing, 

mg·kg−1·d−1 Frequency Excretion
Main Adverse 

Effects

Deferoxamine Yes Yes SC (IV in heart 
failure)

20–50 8- to 14-h infusion 
for

5–7 d/wk

60% Urine;
40% feces

Sensorineural 
deafness, visual 
disturbance, skeletal 
abnormality, growth 
retardation

Deferiprone Yes Yes Oral 75–100 ×3/d 75%–90% Urine Agranulocytosis, 
GI disturbance, 
arthropathy

Deferasirox Yes Yes Oral 20–40 ×1/d ≈90% Feces Rash, GI 
disturbance, rise in 
creatinine

EU indicates European Union; FDA, US Food and Drug Administration (United States); GI, gastrointestinal; IV, intravenous; and SC, subcutaneous.
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relation of the biomarker to HF, although this approach 
ignores previous levels of the biomarker, or by longitudinal 
studies that relate a biomarker to future outcome in a prospec-
tive fashion either with single or serial measurements. The 
latter study design has significant advantages but is harder to 
execute.

6.1 Ferritin
Trends in ferritin level are useful in monitoring the direction 
of body iron loading but may not predict cardiac iron load-
ing. Long-term elevations in ferritin predict cardiac mortality. 
Studies suggest that a ferritin level >2500 μg/L indicates a 
raised risk,28,42,143 but there is no threshold effect, and risk is 
increased even down to ferritin levels of 1000 μg/L. A low fer-
ritin level does not guarantee freedom from HF. Single cross-
sectional ferritin measurements may be misleading because 
they may not reflect long-term ferritin levels and do not cor-
relate with cardiac iron levels.5 Ferritin levels may also be 
increased by inflammation or infection (especially in hepatitis 
C, which is highly prevalent worldwide in adult TM) and may 
be decreased by vitamin C deficiency. Therefore, in individual 
patients, the serum ferritin level may not reflect the individual 
total body iron load and cardiac risk.5,96,143

6.2 Liver Iron
The relation between liver iron and cardiac iron is complex. 
Single cross-sectional liver iron measurements in patients 
on long-term iron chelation may be misleading because they 
may not reflect long-term liver iron levels and do not correlate 
with cardiac iron levels.5 It is likely that failure to control liver 
iron over the long term increases the risk of cardiac iron load-
ing.143,144 Levels of liver iron >15 to 20 mg/g Fe dry weight 
are associated with liver damage, liver fibrosis, and the pres-
ence of increasing levels of free plasma labile iron and free 
chelatable iron.145 It has been shown that noncompliance with 
iron chelation treatment is a major predictive factor for car-
diac iron loading in patients with high ferritin levels, which 
implies high liver iron loading.146 However, high levels of free 
plasma labile iron may be the actual source of iron that loads 
into the heart.147 Therefore, high liver iron levels per se may 
not be the best way to view the cardiac risk associated with 
liver iron loading. Long-term excessive liver iron loading with 
poor current compliance with iron chelation therapy may be 
the worst combination of factors for cardiac iron loading. 
Thus, although control of liver iron over time is likely to be 
important in prevention of cardiac iron accumulation, single 
or even repeated measurements showing low liver iron do not 
guarantee protection from cardiac disease.148

6.3 Cardiac Iron (T2*)
Cardiac T2* has been calibrated to cardiac iron in animals 
and humans.7,123,149 The lower limit of normal is 20 ms,5 a 
threshold below which myocardial T2* in normal subjects 
does not occur. However, this is recognized as a conservative 
threshold, because T2* calibration data suggest 20 ms equates 
to 1.1 mg/g iron dry weight, which is approximately twice 
the historically reported normal mean level of human myo-
cardial iron.150 The probability of a reduced ejection fraction 
increases as cardiac iron increases (cardiac T2* falls).5,38,43 

The longitudinal follow-up of patients has shown that cardiac 
T2* <10 ms predicts HF. Of patients who developed HF, 98% 
had a cardiac T2* <10 ms. Patients with a cardiac T2* <6 ms 
have a 50% likelihood of developing HF within 12 months if 
no change in iron chelation treatment is instituted.6 A 3-tier 
risk model was established on the basis of this finding (low 
risk, >20 ms; intermediate risk, 10–20 ms; and high risk, <10 
ms). A normal cardiac T2* has a very high predictive value for 
exclusion of HF for 12 months.35

6.4 LV Ejection Fraction
An increased risk of clinical HF has been demonstrated for 
patients with falling LVEF or absolute values below the lower 
limit of the normal range96,151; however, there are problems 
with the use of LVEF. Reproducible measurements of LVEF 
require excellent attention to detail in acquisition and analy-
sis. CMR has superior reproducibility compared with echo-
cardiography for measurement of LVEF.101,102 In addition, the 
absolute level of LVEF varies between imaging techniques 
and between centers. Finally, changes in LVEF are a late event 
compared with the early warning of cardiac loading seen with 
intermediate levels of cardiac T2* (10–20 ms). This occurs 
because as iron accumulates in the heart, the early decrement 
in LVEF may be modest and within the normal range until 
iron storage capacity is exhausted. The relation between the 
measured T2* and LVEF is therefore shallow until a critical 
level is reached, after which rapid deterioration may occur. 
Therefore, the T2* technique can identify those patients who 
may benefit from earlier chelation therapy to avoid overt HF, 
which can be difficult to reverse. Because T2* measures stor-
age iron in the form of hemosiderin, and acute toxicity is 
related to free iron, LVEF can improve faster than the cardiac 
T2* with acute chelation treatment, which can drive the free 
iron to zero despite the presence of high tissue levels of hemo-
siderin. Alternative measures of systolic LV function such as 
tagging and myocardial phase mapping may be more sensitive 
to myocardial T2*, but further experience is needed to evalu-
ate their possible clinical role.152

6.5 Diastolic Function and Compliance
There are few data relating diastolic function to outcome. 
In one report of 45 patients with 15 years of follow-up, 11 
patients died, and restrictive LV filling was predictive of 
death.153

6.6 Relative Predictive Power
Direct comparison of cardiac T2* against cross-sectional mea-
surements of liver iron and serum ferritin shows that cardiac 
T2* is the most significant predictor of the development of 
HF.6 There is no direct comparison of cardiac T2* and LVEF 
for prediction of HF. In the presence of low T2*, the impera-
tive for aggressive cardiac chelation, antifailure therapy, and 
hospitalization is increased if the LVEF is reduced or falling 
on closely repeated measurements.

6.7 Age
In children who have received regular transfusions and 
iron chelation, cardiac loading before the age of 10 years is 
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uncommon.54 Cardiac iron loading in younger children has 
been seen in patients receiving little or no iron chelation 
treatment.55

6.8 Exercise Capacity
There are contradictory reports regarding exercise capacity 
in TM patients compared with healthy subjects. TM patients 
have been reported to have limited exercise capacity,154 with 
increasing cardiac iron correlated with decreasing exercise 
capacity.155 Others have found normal exercise capacity but 
a decreased ratio between cardiac index and oxygen extrac-
tion at peak exercise in TM patients, which shows a lower 
contribution of the cardiovascular system to maintain oxygen 
uptake.156 Another study showed similar or reduced exercise 
capacity in TM patients, with normal oxygen delivery but 
reduced utilization.157 Consensus opinion is that exercise 
capacity is often consistent with the degree of anemia and 
does not appear to be useful to diagnose preclinical disease.158

7. Conventional Medical Treatment of HF
The medical management of chronic HF without hemoglo-
binopathy is based on published guidelines.159–164 In general, 
the recommendations are similar among guidelines. Overall, 
management of TM with chronic HF and cardiomyopathy 
should follow these guidelines unless specified in the follow-
ing sections.

8. Why Treatment of HF in TM Is Different
8.1 Introduction
Although the main aspects of the diagnosis and management 
of HF are well known, the acute and chronic care of HF that 
complicates TM differ in a number of important ways. First, 
the age of the population being treated is much younger.165 
Second, it is a toxic cardiomyopathy related to myocardial 
iron accumulation, so that there is the important prospect of 
complete resolution of ventricular dysfunction with treatments 
directed at iron removal rather than directly at myocardial per-
formance. Third, there may be important comorbidities that 
require recognition and specific treatment in their own right.

8.2 Reversibility
Iron cardiomyopathy is the most common and feared com-
plication of TM, but because it is caused by iron toxicity, it is 
reversible.

8.3 Endocrine, Metabolic, and Infectious 
Comorbidities
TM patients with cardiac iron overload also have iron over-
load in many endocrine glands,166,167 including the pancreas, 
pituitary, thyroid, parathyroid, and adrenal gland. The endo-
crine and metabolic deficiencies can mimic or exacerbate HF. 
Primary myocardial dysfunction can be caused by hypopara-
thyroidism168–170 and hypothyroidism,171,172 and these condi-
tions may exacerbate iron cardiomyopathy. Decreased adrenal 
reserve is also common in TM,173–178 and patients in HF should 
be treated as though they have adrenal insufficiency until 

proven otherwise. Hypogonadotrophic hypogonadism is the 
most common endocrinopathy observed in TM,1,179 and low 
sex steroids may exacerbate HF symptoms.180,181 Growth hor-
mone deficiency must also be considered and may contribute 
to HF. Many TM patients have diabetes mellitus, and insulin 
resistance and type 2 diabetes mellitus are strongly associated 
with cardiac iron deposition. Cardiac metabolism is altered, 
and a propensity to cardiac dysfunction is associated with 
chronic hyperglycemia and insulin resistance, in which there 
occurs a shift of cardiac metabolism from glucose to fatty acid 
oxidation, with associated lipotoxicity, activation of the renin-
angiotensin-aldosterone axis, hypertrophy, altered calcium 
homeostasis, fibrosis, and microvascular disease.182 Thus, the 
phenotype of iron-overload cardiomyopathy may have some 
overlap with the cardiovascular changes typically associated 
with type 2 diabetes mellitus. Glucose control must be consid-
ered in acute and chronic HF management, ideally by the use 
of insulin infusions, with meticulous avoidance of hypoglyce-
mia and hyperglycemia.

The chronic anemia and ineffective erythropoiesis of thal-
assemia are associated with a hypermetabolic state that leads 
to deficiencies in a number of metabolically important cofac-
tors such as thiamine, B6, and folate.183 Fat-soluble vitamins 
are decreased,184–186 as are trace elements such as zinc, copper, 
and selenium.183,185,187 Carnitine deficiency is also common, 
and carnitine replacement therapy has been associated with 
clinical improvement in uncontrolled studies.188,189 Hence, in 
any TM patient presenting with decreased cardiac function, it 
is prudent to eliminate possible contributions from thiamine, 
carnitine, or extreme vitamin D deficiencies (25 hydroxyvi-
tamin D levels <10 ng/dL),190–192 given the benign nature of 
replacement therapy.

Sepsis is the second-leading cause of death in TM patients 
and may precipitate HF. Whether sepsis disrupts iron stores in 
the heart or whether the hemodynamic stress induced by sepsis 
merely unmasks compensated HF is unknown. Many older TM 
patients have been subjected to splenectomy and are therefore 
vulnerable to severe infection by encapsulated organisms193; 
in patients treated with the chelator deferoxamine, increased 
iron stores may also predispose to bacterial infection, 
particularly with some unusual pathogens, including Yersinia 
enterocolitica.131 Chronic antigen exposure with blood 
transfusion also downregulates cell-mediated immunity and 
may leave TM patients at risk for fulminant infections.194–197

Myocarditis prevalence in 1995 was estimated to be 4% 
among a cohort of Greek TM patients, and it was suggested 
that such infections were the cause of LV failure.198 The same 
group hypothesized an association of the major histocompat-
ibility subtypes HLA-DRB1*1401 and HLA-DQA1*0501 
with LV HF.199 Since these reports were published, improved 
access to iron chelation appears to have decreased the inci-
dence of myopericarditis significantly.5,200,201 The clinical pre-
sentations of myocarditis and decompensated HF attributable 
to severe iron overload have considerable overlap, except that 
iron-induced cardiomyopathy does not typically manifest with 
chest pain, diffuse ST-T–wave changes, or increased cardiac 
enzyme levels. Given the overlap and the possibility that iron 
may exacerbate myopericarditis, all TM patients with acute 
reductions in cardiac function should receive intensified iron 
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chelation therapy empirically until cardiac iron loading can be 
confirmed by CMR.

8.4 Different Baseline Hemodynamics and Different 
Response to Loading
Patients with TM have an increased cardiac index as a con-
sequence of their chronic anemia.53,103,200 The heart rate and 
stroke volume may both be elevated compared with age- and 
sex-matched control subjects. Thus, mild tachycardia and car-
diomegaly must be viewed as physiological compensation for 
the anemia rather than pathological associations that imply 
myocardial iron overload. The hyperdynamic circulation char-
acteristic of this group accounts in part for the increased refer-
ence ranges for ventricular ejection fractions in thalassemia.103 
Despite having an increased cardiac index, TM patients also 
have lower systolic blood pressure and a blunted temporal vari-
ability of blood pressure, consistent with a markedly decreased 
systemic vascular resistance.75,202 Despite having lower blood 
pressure and higher cardiac index, measurements of aortic and 
peripheral vascular compliance reveal decreased values in TM 
patients that worsen with iron overload and with age.82,83,203–205 
Iron overload exacerbates oxidative stress in the vasculature, 
accelerating age-related increases in vascular stiffness.205 
Flow-mediated dilation, a marker of endothelial function, 
is proportional to cardiac T2*, which suggests commonality 
between cardiac and vascular iron overload.9 Chelation therapy 
for 1 year improves endothelial function, which suggests that 
the relationships are causal rather than correlative.9,83 Increased 
systemic vascular elastance creates a ventricular-vascular mis-
match in TM patients that can lead to unfavorable ventricular 
remodeling and increased cardiac oxygen consumption.206,207

The aforementioned physiological differences affect the 
success of HF treatment in thalassemia. Baseline preload is 
high because of chronic anemia. Therefore, although diuresis 
can lower wall stress and improve symptoms attributable to 
fluid overload, overdiuresis can precipitate acute renal failure 
by excessive reduction of preload, especially in the setting of 
compromised oncotic status with chronic liver disease (iron 
induced, hepatitis C) and hypoalbuminemia.18 Older patients 
may have a restrictive physiology that does not tolerate either 
overfilling or underfilling. Although there are no clear data, 
maintaining higher hemoglobin levels in patients with HF 
may be beneficial. Afterload reduction is often the mainstay of 
conventional acute HF treatment and can improve ventricular-
vascular coupling in dilated cardiomyopathy. Unfortunately, 
chronic anemia results in low systemic afterload, and addi-
tional poor vascular compliance in the TM patient may limit 
the afterload reduction that is tolerated (even relatively young 
patients may have stiff vessels). Afterload reduction should 
be titrated very carefully against urine output and clinical 
response rather than target pressures, which are often derived 
from experience in non-TM populations and not applicable in 
this hemodynamically unusual group of patients. Overall, there 
are no data on the use of conventional HF treatments in TM 
patients with HF, but it is inadvisable to withhold such treat-
ments that have been shown to have significant mortality and 
morbidity benefits in patients without thalassemia. However, 
exceptional caution is required in the setting of acute decom-
pensated HF, and this is discussed further in the next section.

Although positive inotropes are often used to improve ven-
tricular-vascular coupling, their use comes with significant 
penalties in iron cardiomyopathy. Most inotropes increase 
intramyocyte calcium levels, may worsen oxidative stress, and 
increase electrical automaticity, which may act synergistically 
with iron-mediated toxicity to the detriment of myocyte func-
tion. Thus, we recommend that inotropes should be used with 
great caution and reserved for desperate situations and that 
doses should be minimized whenever possible.

8.5 Unique Electrophysiology
Arrhythmias in TM are a mixture of triggered and reentrant 
arrhythmias.208 Chronic volume overload creates an anatomic 
substrate suitable for atrial and ventricular reentrant tachycar-
dias and fibrillation by lengthening the conduction paths and 
increasing dispersion of repolarization. However, patients with 
thalassemia intermedia, who have larger chamber volumes but 
little cardiac iron, have fewer cardiac arrhythmias than TM 
patients, which implies a critical role for iron toxicity.200,209 
Atrial iron cannot be measured by CMR, but atrial arrhythmia 
risk correlates with ventricular T2* estimates.6 Iron deposi-
tion is most common in working muscle and tends to spare 
the conduction system.72,210 Postulated mechanisms for the 
electrophysiological effects include inhibition of fast inward 
sodium currents, blockage of ryanodine calcium release chan-
nel, and oxidative stress–mediated changes in sarcoplasmic 
calcium release and reuptake.71,211–213

Clinically, intra-atrial reentrant tachycardia and AF are 
the most common serious rhythm disturbances.214 Ectopic 
atrial tachycardia and chaotic atrial rhythm may also be 
seen, particularly in the presence of significant cardiac iron 
loading.27,44 Amiodarone is often successful in controlling 
atrial arrhythmias and can be a powerful temporizing 
measure during intensive iron chelation. Long-term 
therapy may be complicated by hypothyroidism because 
of iron-mediated thyroid damage215; however, amiodarone 
therapy can often be terminated successfully after 6 to 12 
months. Ablation should be reserved for patients who have 
undergone successful removal of cardiac iron (documented 
by CMR). Ventricular arrhythmias are more specific for 
iron cardiotoxicity.214 Frequent premature ventricular 
contractions, by themselves, are not specific for iron 
cardiomyopathy, but couplets, nonsustained ventricular 
tachycardia, or mixtures of frequent atrial and ventricular 
premature contractions should raise clinical suspicion. 
Historically, sudden death accounts for ≈5% of cardiac 
deaths in TM and is associated with severe iron overload 
and increased QT dispersion, which suggests iron-mediated 
repolarization abnormalities and torsade de pointes as a 
causative mechanism.46,216 Ventricular late potentials have 
also been described in thalassemia and are correlated 
with serum ferritin levels.217 Treatment of potentially 
life-threatening ventricular arrhythmias in patients with 
severe cardiac iron burdens is problematic, because the 
physiological substrate is potentially reversible, and device 
therapy should be avoided if possible because it precludes 
further monitoring of cardiac iron stores by CMR. A 
defibrillation vest may represent a viable therapeutic bridge 
during intensive iron chelation therapy.
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9. Treatment of Acute Decompensated 
HF With Reduced Ejection Fraction

9.1 Recognition of Acute HF
Acute decompensated HF is recognized as a clinical syndrome 
that includes progressive dyspnea and significant fluid reten-
tion. A significant presenting feature in TM can be abdomi-
nal (or other location) pain from distended organs such as the 
liver. This is usually associated with reduced ventricular func-
tion and raised BNP.

9.2 Mortality Rate in Acute HF
The death rate attributable to HF in historical series was 50% 
within 1 year.27,44 In 52 patients with mean LVEF of 36%, there 
was 48% survival after 5 years with no change in iron chela-
tor and use of cardiac medications.46 In recent years, with the 
introduction of continuous intravenous deferoxamine treat-
ment, survival has improved, with a report of this treatment 
showing survival of 6 of 7 patients.47 Deferoxamine intensifi-
cation (continuous intravenous or subcutaneous) showed sur-
vival in 17 of 20 patients.218

9.3 Where Should Patients With HF Be Treated?
This is a medical emergency and requires specialized medi-
cal care. Delay in starting appropriate chelation therapy can 
be life-threatening. On presentation, advice should be sought 
about treatment from a specialist center that is experienced 
in treatment of HF in thalassemia patients. Such a center is 
expected to have a larger volume of TM patients under care 
and have experience with less common complications. Early 
transfer of the patient to the specialist center is strongly 
advised where possible to allow integrated cardiological and 
hematologic care with doctors skilled in handling HF in TM. 
There are some data supporting this approach to improve car-
diac outcomes.219,220 When admission to a specialist center is 
not possible, close liaison with such a center is mandatory.

9.4 Management of Acute Decompensated  
HF in TM
The aim of treatment in acute HF is to keep the patient alive so 
that iron chelator treatment can detoxify the cardiac iron. We 
recommend the following management strategy:

1. Immediate commencement of 24-hour-per-day continu-
ous (uninterrupted) intravenous iron chelation treatment 
with deferoxamine 50 mg·kg−1·d−1.47–49,151

2. The patient should have continuous electrocardiographic 
and hemodynamic monitoring.

3. As soon as is practical, perform bedside echocardiogra-
phy to confirm the diagnosis of HF and exclude other car-
diovascular conditions, including pulmonary embolism.

4. Introduce deferiprone as soon as possible at a dose 
of 75 mg·kg−1·d−1 (the total dose given in 3 divided 
doses).50,221–226

5. Supportive hemodynamic therapy should be geared to 
maintain cerebral and renal perfusion, avoiding aggres-
sive inotropic therapy, which can be detrimental. Blood 
pressure is typically low in TM patients and should not 
attract specific therapy if renal and cerebral perfusion is 
maintained.

6. Only minimum diuretic treatment should be used 
because of the importance of maintaining preload. 
Consideration should be given to the alternative maneu-
ver of venous ultrafiltration to remove excess fluid as a 
means to prevent reduction in preload,227,228 but recent 
results have shown more renal failure and adverse events 
with its use in non-TM patients with decompensated 
HF,229 and further trials are needed to establish its role.

7. Cardiac arrhythmias are common and often respond to 
continuous iron chelation treatment. Meticulous atten-
tion should be given to normalization of electrolyte 
abnormalities, and consideration should be given to 
the use of magnesium infusion to stabilize ventricular 
arrhythmia. Nevertheless, amiodarone is the drug of 
choice to treat hemodynamically significant arrhyth-
mias. β-Blockers can be used if the hemodynamic sta-
tus allows. There is no published evidence for the use 
of these interventions.

8. Maintain meticulous glucose control with insulin/
potassium infusion. This may also help with cardiac 
inotropic status.230

9. Give hydrocortisone on the presumption of inadequate 
adrenal response to stress.175

10.  Check thyroid, liver, and renal function and calcium, 
magnesium, vitamin D, carnitine, and other metabolic 
parameters and correct these when necessary.

11.  Maintain hemoglobin between 10 and 12 g/dL. This 
may require frequent small-volume transfusions.

12. Search for precipitating conditions such as infections.
13.  There is no evidence to support the initiation 

of angiotensin-converting enzyme inhibitors or 
angiotensin 2 receptor blockers to manage acute 
decompensation, and the successful introduction of 
these drugs is often compromised by poor tolerance 
caused by low blood pressure. The introduction of 
β-blockers as an antifailure treatment has the merit of 
reducing the propensity to arrhythmia and may take 
priority over angiotensin-converting enzyme inhibitors/
angiotensin 2 receptor blockers. The introduction 
of these drugs can be considered for management of 
chronic HF, after the patient is stabilized and is past the 
acute decompensation period.

14.  Cardiac T2* should be performed as soon as is practi-
cal. If cardiac T2* is >20 ms, then myocarditis should 
be considered as a cause of HF, using a standard CMR 
myocarditis protocol.231

9.5 Additional Notes

1. Clinical stabilization can occur within 14 days after 
commencement of continuous iron chelation treatment 
but can also take months.

2. Patients with renal failure may require early dialysis to 
remove the iron chelator and, although experience with 
this is limited, efficacy is not proven and may vary by 
chelator.

3. Deferasirox has not been evaluated in acute HF and may 
be ill-advised in the presence of marginal renal perfusion.

4. Consideration should be given to mechanical support 
devices to support both ventricles, bearing in mind the 
RV is often compromised. There is no published evi-
dence for this approach.
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5. Cardiac transplantation has been used, but its relevance 
is questionable in the modern chelation era.232–235

6. Cardiac storage iron is removed very slowly from the 
heart, even with intensive iron chelation. Treatment will 
need to be continued for several years and should be 
monitored by regular T2* and cardiac function assess-
ments. Iron chelation treatment may require adjustment 
according to liver iron and serum ferritin levels to pre-
vent chelator-mediated toxicity.

7. Compliance with iron chelation treatment is essen-
tial for long-term survival of acute cardiac failure, but 
long-term follow-up by a specialist center is essential to 
achieve optimal outcomes.219,220

8. Long-term intravenous deferoxamine treatment 
requires careful management of the intravenous line, 
anticoagulation, and scrupulous sterile access tech-
niques. Careful consideration of the risk and benefits 
of this approach must be given on a case-by-case basis.

9. Conversion from 24 hours/day intravenous to 24 hours/
day subcutaneous deferoxamine iron chelation treat-
ment can be considered after the acute period.151

10.  Combination therapy with daily subcutaneous defer-
oxamine and daily oral deferiprone (for the avoidance 
of doubt, both drugs are taken together every day) has 
been used extensively for long-term management of 
patients with impaired LV function without decompen-
sated HF.50 The use of subcutaneous deferoxamine infu-
sion avoids the infection risk of long-term intravenous 
infusion.

11.  After resolution of decompensated HF, treatment may 
need to continue for several years to remove cardiac 
iron in thalassemia.47 In hemochromatosis, cardiac iron 
has been shown to persist even when venesection has 
resulted in hypoferremia and iron deficiency anemia.236

12.  Treatment should be monitored by assessing clinical 
status, LVEF (which can improve substantially within 
weeks), cardiac T2* (which improves over months), 
and ferritin trend.

10. Treatment of Myocardial Iron Overload 
Without Cardiac Decompensation

10.1 Level of Urgency
Many factors come into play when considering whether to 
escalate therapy in response to detection of cardiac iron (T2* 
<20 ms) in an asymptomatic patient with normal or near-nor-
mal LVEF. These include the severity of cardiac iron loading, 
whether there is any evidence of preclinical cardiac toxic-
ity, longitudinal trends in cardiac iron, liver iron burden, and 
patient compliance.

Without escalation in therapy, the prospective risk for 
developing HF in 1 year is 47% if cardiac T2* is <6 ms, with a 
relative risk of 270 compared with patients having a T2* >10 
ms.6 In an observational study of 652 patients followed up for 
up to 7 years, only 1 of 80 HF episodes occurred in a patient 
who had a T2* >10 ms.6 Because outcomes for symptomatic 
HF are poor,48 many thalassemia centers will treat patients 
who have T2* <6 ms similar to those with overt HF. Patients 
having T2* between 6 and 10 ms are often placed on intensi-
fied but not necessarily maximal chelation therapy. Patients 
with T2* between 10 and 20 ms can often be managed more 

conservatively, with modifications of chelator dose, efforts 
to improve patient compliance, or alternative or additional 
chelators. Preclinical reductions in heart function also war-
rant escalation in chelation therapy.151 Many patients with 
mild reductions in heart function are completely asymptom-
atic but are at significantly increased risk for progression to 
HF and death.151 CMR estimates of cardiac function can also 
be collected easily at the time of cardiac T2* assessment. As 
noted above, the role of other preclinical markers of cardiac 
iron toxicity, including arrhythmias, QT prolongation, and 
exercise capacity, in guiding chelation therapy is currently 
unknown.6,155,216

Longitudinal trends in cardiac T2* values are also impor-
tant.148 Cardiac iron clears slowly, with a half-life of ≈13.5 
months (5% per month) during continuous intravenous def-
eroxamine,47 and a third as fast with intermittent deferox-
amine therapy.8,9 Therefore, normalization of cardiac iron 
lags improvements in total body iron burden. A patient whose 
cardiac T2* has improved from 6 to 8 ms in 1 year should 
clearly be handled differently from one whose cardiac T2* has 
declined from 10 to 8 ms over the same interval.

Liver iron burden also plays a role in determining how 
aggressively one should respond to the presence of cardiac 
iron. The chelatable iron pool increases with total body iron 
stores,145,237,238 although the mechanisms of this phenome-
non are not well understood. Chelators such as deferasirox 
and intermittently dosed deferoxamine primarily interact 
with intravascular or hepatic labile iron. When hepatic iron 
stores are high, changes in cardiac iron may be quite modest 
until the liver iron levels drop below 5 mg/g.148,239 Chelators 
with better intracellular permeability, such as deferiprone, 
appear to have superior cardiac iron clearance when liver 
iron is high.8,240

Lastly, knowledge of patient compliance with medication 
is essential in determining appropriate chelation for any given 
patient with cardiac iron overload. Compliance is an important 
predictor of cardiac chelation efficacy,146 particularly for 
chelators such as deferoxamine and deferasirox that act 
primarily as intravascular sinks to clear cardiac iron. Cardiac 
T2* measures primarily insoluble, inert hemosiderin, which 
exists in equilibrium with the toxic labile iron pool. If free 
drug is available around-the-clock to soak up toxic labile 
iron, increases in cardiac iron deposition or progression to HF 
may be less likely, regardless of the measured cardiac T2*. 
However, labile iron rebounds quickly in the absence of iron 
chelation,241,242 so anything short of perfect compliance is likely 
to place the heart at risk.146,243 Because the intensity of labile 
iron exposure increases with liver iron concentration,145,237,238 
the cardiac penalty for noncompliance is likely to be worse for 
higher liver iron stores.144,239

10.2 Cardiac Iron Chelation Strategies
Deferoxamine, deferasirox, and deferiprone all remove car-
diac iron if given in adequate doses and if patient compli-
ance is good. However, each medication has advantages and 
disadvantages, and optimal therapy must be tailored to each 
patient. There are many excellent reviews on this subject.244–246 
The following recommendations are specific to patients with 
detectable, asymptomatic cardiac iron overload.
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10.2.1 Deferoxamine Monotherapy
The half-life of deferoxamine is only 30 minutes, and labile 
iron rebounds (often with an overshoot) within hours of infu-
sions being stopped. When the drug is given in standard, inter-
mittent subcutaneous infusions, it will clear cardiac iron at 
1.1% to 2.2% per month.8,9 By contrast, continuously adminis-
tered deferoxamine clears cardiac iron at nearly 5% per month 
because labile iron is scavenged continuously, leaving a gradi-
ent between the heart and intravascular space. Thus, increas-
ing the days and duration of deferoxamine therapy will tend 
to improve cardiac iron clearance. The primary limitation of 
this approach is patient discomfort and inconvenience, which 
leads to poor patient acceptance. Local skin reactions pre-
vent subcutaneous therapy in some subjects, introducing the 
known risks of chronic intravascular access. Others are unable 
or unwilling to undergo chelation during the day because of 
job or social considerations. We recommend a change in che-
lation treatment in patients with cardiac siderosis if there is 
poor compliance with deferoxamine.

10.2.2 Deferiprone Monotherapy
Retrospective studies suggest that deferiprone monotherapy 
offers superior cardiac protection240,247,248 and improves sur-
vival compared with routine deferoxamine therapy.249,250 
Improvements in myocardial iron loading in national strate-
gic programs with treatment regimens including deferiprone 
have also been reported,3,251 with associated improvements 
in outcomes.3,14,252 These survival data are recognized by the 
European Medicines Agency.253 There is only 1 prospective 
randomized study comparing deferoxamine and deferiprone 
monotherapy.8 Deferiprone given at 92 mg·kg−1·d−1 cleared 
cardiac iron at a rate of 2.2% per month, nearly double the 
rate produced by deferoxamine in the same trial. Deferiprone 
significantly improved LVEF in contrast to no change in 
LVEF with deferoxamine,8 despite statistically insignificant 
improvements in hepatic iron concentration. Separate analysis 
showed that deferiprone also improved RV ejection fraction 
more than deferoxamine.254 We recommend the use of deferi-
prone monotherapy in patients with cardiac siderosis, and it is 
also suitable for patients with reduced LVEF or asymptomatic 
LV dysfunction. Deferiprone combined with deferoxamine 
(both given daily together) is commonly prescribed in severe 
cardiac siderosis for maximum effect (Section 10.2.4).

10.2.3 Deferasirox Monotherapy
Publications from 2 open-label, single-arm trials with mul-
tiple reports (cardiac substudy of the EPIC trial [Evaluation 
of Patients’ Iron Chelation With Exjade]10,255,256 and US04239,257 
trial) showed that deferasirox monotherapy can be used suc-
cessfully in patients with detectable cardiac iron and nor-
mal cardiac function. Data from a small case series were in 
accord.258 However, no change in LVEF was seen in these 
trials. Cardiac iron clearance rates were 1.3% to 1.5% per 
month, comparable to those published for deferoxamine. 
Iron clearance rates, however, may be a function of initial 
hepatic238,239,257 or cardiac10,255,256 iron burden. The results of 
a large randomized controlled trial presented late in 2012 
showed the efficacy of deferasirox for removal of cardiac iron 
(mean dose 36.7 mg·kg−1·d−1), with noninferiority of defera-
sirox compared with deferoxamine, but no change in LVEF 

with treatment.259 We recommend that deferasirox is suitable 
to treat cardiac siderosis, but we do not recommend the use 
of deferasirox as first-choice treatment for cardiac T2* <6 ms 
or in patients with reduced LVEF because of the limited data 
on efficacy available at this time. We recommend caution in 
the use of deferasirox monotherapy to treat cardiac siderosis 
in patients with high liver iron loading, in whom high doses 
(>40 mg·kg−1·d−1) may be needed and cardiac efficacy may be 
delayed.

10.2.4 Combined Drug Therapies
Deferoxamine and deferiprone have been combined 
successfully (both drugs taken together every day or most 
days) to improve cardiac and hepatic iron clearance.260,261 There 
is evidence of a synergistic shuttle effect between deferiprone 
and deferoxamine in improving iron clearance.69,262 Reversal of 
cardiac siderosis and improvement in LVEF have been shown 
in several small trials.263–265 In one open-label, single-arm 
trial of patients with depressed LVEF and severe cardiac iron 
(T2* <8 ms), combined subcutaneous deferoxamine and oral 
deferiprone 75 mg·kg−1·d−1 for 7 days a week improved cardiac 
T2* 3.3% per month and normalized LVEF in all individuals 
with cardiac dysfunction.50 In a randomized controlled trial, 
patients having T2* between 8 and 20 ms received either 
deferoxamine monotherapy or deferoxamine combined with 
deferiprone (both given together, with deferoxamine dosed 
at 5–6 days per week).9 Combined therapy increased cardiac 
T2* 4.2% per month compared with only 2.2% per month for 
deferoxamine therapy. RV function was also shown to improve 
significantly more with combination treatment.266 However, 
the addition of even as little as 2 deferoxamine doses per 
week to daily deferiprone appears to greatly improve overall 
iron balance.267 The use of combination therapy has been 
associated with improved outcomes in severe cardiac iron 
loading compared with the use of deferoxamine alone.226,268 
The use of the combination of deferoxamine and deferiprone is 
widespread, and this combination is used especially in patients 
with moderate to severe cardiac iron overload or when LVEF 
is impaired. We recommend its use in these circumstances, 
and clinical experience suggests that there are no significant 
toxicity issues for the combination, although safety reports 
are limited compared with trials of chelator monotherapy.269 
The combination of daily deferiprone with daily deferasirox is 
currently under investigation, but there are currently very few 
data to support this attractive regimen.270 Deferasirox has also 
been combined with deferoxamine.271

10.2.5 Sequential Drug Therapies
One randomized trial also suggested that alternating deferox-
amine and deferiprone therapies (drugs taken sequentially on 
different days, but not taken on the same day together) pro-
vided comparable cardiac protection to deferiprone mono-
therapy, with improved control of liver iron concentration.272 
This therapy represents another option in patients with mild 
cardiac siderosis.

10.3 Treatment of Patients With Cardiac Siderosis 
With Abnormal or Falling LVEF
Patients with myocardial iron loading who have reduced 
LVEF for TM,103 or a consistent trend over time with several 



Pennell et al  CV Function and Treatment in β-Thalassemia Major  295

measurements toward abnormality, form a subset of patients 
identifiable clinically as having early HF, which is usually 
asymptomatic. The measurement technique used to deter-
mine cardiac function will vary according to local availability 
but can include LVEF, cardiac dimensions, or possibly tissue 
Doppler parameters. If repeated measures of cardiac function 
are compared, this must be done using a consistent technology 
(eg, CMR or echocardiography for all measurements, using 
the same acquisition technique). Such patients require inten-
sification of chelation. This may only require dose adjustment 
of current treatment or measures to improve compliance. 
Should these measures prove ineffective within a few months, 
or should clinical concern exist, a change in iron chelator regi-
men is required. We recommend the use of deferoxamine with 
deferiprone in combination in these circumstances.50 This 
approach is consistent with data from randomized controlled 
trials, 9,128 as well as an analysis of the decreased risk of devel-
oping HF in patients whose LVEF improved with treatment.273

11. Monitoring Treatment With 
Respect to the Heart

11.1 Monitoring of Body Iron Load
Regular monitoring is recommended of ferritin (at least every 
3 months) and of liver iron concentration by MRI (annu-
ally). The trend indicates the direction of body iron load-
ing, which reflects the balance of transfusional iron intake 
and iron chelator–mediated iron excretion (chelator regimen 
and patient compliance). There is little useful relation clini-
cally between single measurements of ferritin and cardiac 
T2* in patients already receiving chelation therapy.5 Failure 
to control ferritin on a long-term basis increases the likeli-
hood of heart disease. Increased cardiac risk been shown with 
long-term ferritin >2500 μg/L,28,143,146,151 as well as for values 
>1000 μg/L.1 Ferritin as a single measure of total body iron 
can be misleading, however, and liver iron concentration can 
be used as an additional measure to provide quantification of 
total body iron stores274 and hence the risk of progressive liver 
damage.275 Single estimates of liver iron concentration by T2* 
do not correlate with cardiac T2* in patients receiving chela-
tion therapy5; however, there is a relationship between a single 
liver iron concentration measurement and cardiac survival.143

11.2 Clinical Cardiac Monitoring
Patients receiving regular transfusion and iron chelation 
should be assessed formally for their cardiac status (history, 
physical examination, and auscultation) beginning at the age 
of 10 years and annually thereafter. Ideally, this assessment 
should be performed by a cardiologist with expertise in iron-
related cardiac disease, working closely with clinicians at 
a reference center. Such an approach, including the cardiac 
investigations, increases the likelihood of identifying pre-
clinical cardiac disease, which permits early intensification of 
treatment and prevents the development of HF.

11.3 Cardiac Investigations
It is recommended that annual electrocardiography and echo-
cardiography (chamber dimension and function) be performed. 

The first CMR for cardiac T2* should be performed as soon 
as the child can cooperate without sedation or anesthetic, 
which is typically between the age of 6 and 10 years. After 
this, annual assessment of T2* CMR is typical, but individual 
patient factors will determine the frequency of repetition. For 
example, patients at high risk (T2* <10 ms, reduced LVEF, 
poor compliance, treatment interruption) may require scan-
ning every 6 months. In the patient with stable chelation and 
stable cardiac T2* >20 ms, scans can be repeated less fre-
quently (every 2–3 years).

11.4 LVEF Response During Chelation
The trend in LVEF and cardiac dimensions is useful to 
monitor response to treatment. A worsening in cardiac 
function is a poor prognostic sign151 and an indication for 
intensification of treatment. Different responses in the 
LVEF to iron chelators have been demonstrated in cardiac 
siderosis without decompensation. Data from control arms 
of 2 randomized controlled trials showed subcutaneous 
deferoxamine did not significantly improve LVEF in mild 
to moderate cardiac iron overload,8,9 whereas the active 
arms of these trials showed significant increases in LVEF 
with deferiprone,8,9 and this has been found in other trials.276 
These findings are in accordance with those of cross-sectional 
studies.240,248 LVEF does not increase with deferasirox 
treatment in cardiac siderosis.10,239,255,256 The improvement in 
LVEF probably reflects relief of subclinical cardiotoxicity; 
it is associated with a lower risk of developing HF and is a 
good prognostic sign.273 If cardiac function fails to improve, 
it is important to also consider additional contributory 
factors, such as other cardiomyopathy or other concomitant 
pathology. It is likely that trends in cardiac T2* have similar 
importance for prognosis, but this has not been addressed in 
published studies. Where T2* CMR is not readily available, 
serial cardiac function measurements become paramount as 
an important indicator for increased risk of HF from cardiac 
iron overload.

12. Cardiac Mortality and Iron Chelation
The introduction of deferoxamine infusion in the 1970s had 
a profound effect on reducing mortality in TM,2,277 and this 
was dominated by a reduction in iron overload–related car-
diac mortality. More recently, deferiprone was introduced 
into clinical care in many countries (European approval in 
1999 and US Food and Drug Administration approval in 
2011), either as monotherapy or in combination with defer-
oxamine. Its use has been associated with reduced cardiac 
mortality in the United Kingdom, Italy, Cyprus, and Hong 
Kong.11,14,249,250,268,278,279 In the United Kingdom, treatment with 
deferiprone has been linked to the finding of normal cardiac 
iron concentration with cardiac T2* >20 ms.240 The mecha-
nism for the improved mortality is probably multifactorial but 
may include early identification of patients at cardiac risk by 
cardiac T2*, improved compliance with chelation therapy, 
or specific cardiac actions of deferiprone, including greater 
access to cardiac iron stores or mitochondrial iron. There have 
been no reports since the introduction of deferasirox (US Food 
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and Drug Administration approval in 2005) that have docu-
mented any effects on cardiac mortality in TM.

13. Pregnancy
Recent advances in the management of TM have substantially 
reduced complications and improved quality of life and life 
expectancy of patients, with a consequent increase in their 
reproductive potential and desire to have children. An increas-
ing number of woman with TM have a successful pregnancy, 
with >500 pregnancies reported.22,280–283 Spontaneous fertility 
can occur in well-transfused and chelated women with TM. 
Unfortunately, the majority have impaired fertility caused by 
hypogonadism and require induction of ovulation, which may 
produce a high number of twin or triplet pregnancies.283–286 
The maternal and fetal risks depend primarily on preexisting 
maternal complications and iron-related organ damage.287 Iron 
overload may result in cardiac complications, and therefore, 
we recommend assessment of heart T2* and cardiac function 
and dimensions before conception. Blood consumption may 
increase during pregnancy to maintain a hemoglobin level of 
≈10 g/dL and ensure optimal fetal growth,283 and when com-
bined with the interruption of chelation because of teratogenic 
considerations, this may significantly worsen iron overload. 
These factors, the increased blood volume and changes in 
blood pressure, may compromise heart function, which should 
be monitored carefully during pregnancy.

The rate of cardiac complications in pregnancy ranges from 
1.1% to 15.6%.284,288 In patients with severe heart or liver iron 
overload, a restarting of iron chelation with deferoxamine 
toward the end of the second trimester should be considered. 
Spontaneous miscarriage and fetal loss have been reported in 
9% to 33.3% of pregnancies in women with thalassemia.285,289 
Preterm births for underlying maternal or obstetric complica-
tions have occurred at increased rates. Obstetric complications, 
including gestational diabetes, preeclampsia, and hyperten-
sion, have been reported frequently.287 The rate of cesarean 
delivery because of fetopelvic disproportion, osteoporosis, 
maternal HIV infection, or patient choice varies between 24% 
and 100%.283,284 Prophylaxis for thromboembolism with hepa-
rin or low-molecular-weight heparin is indicated, particularly 
in splenectomized patients and in patients with thalassemia 
intermedia. In conclusion, provided that a multidisciplinary 
team is available, pregnancy is possible with a favorable out-
come, but such pregnancies are best handled in expert centers 
because of the increased risk to mother and baby, especially in 
women who have preexisting cardiac disease or large amounts 
of cardiac iron.

14. Late Consequences of Transfusion
14.1 Arrhythmias and Iron Loading
From the earliest reporting of the cardiovascular complica-
tions of thalassemia, it was noted that arrhythmia and conduc-
tion disturbance were featured prominently.27 AF was the most 
common arrhythmia (12 of 20) encountered in transfused but 
not chelated patients, with ventricular arrhythmias being less 
common (2 of 20). Abnormalities of conduction disturbance 
from complete heart block (4 of 20) to more minor electro-
cardiographic abnormalities were also seen (15 of 20).27 The 

follow-up of this cohort revealed that 50% of patients had 
cardiac rhythm disturbances by the age of 20 years, and 40% 
developed heart block, although this complication was uncom-
mon (6%) before the age of 15 years.45 Early pathological 
examination of hearts affected by iron overload emphasized 
the patchiness of iron overload,72 with evidence of atrioven-
tricular nodal and conducting tissue having variable iron con-
tent that was not always associated with clinical evidence of 
arrhythmia or heart block.210 A role of severe, untreated iron 
overload in the development of conduction disturbance would 
appear likely. The incidence of heart block has diminished 
drastically with effective chelation therapy in TM patients.290 
In a prospective series, ≈14% of patients with severe iron 
overload (T2* <6 ms) experienced an arrhythmia within 1 
year of the CMR scan; most of these arrhythmias were AF 
(78 of 98 patients), although a few patients had ventricular 
arrhythmia (5/98), including 1 patient who died.6 Arrhythmias 
may occur in patients with normal myocardial T2*,6 and a 
number of explanations for this finding are possible, including 
the existence of atrial iron loading separate from the ventricle, 
vulnerability of the atria to arrhythmias, persistence of atrial 
iron loading despite ventricular clearance, myocarditis, and 
the longstanding proarrhythmic atrial effects of volume load-
ing and high cardiac output caused by chronic anemia.

14.2 Arrhythmias in Relation to HF
Arrhythmias in TM may be a consequence of the development 
of HF, may precipitate HF, or may occur in the context of good 
LV function with or without current evidence of iron overload. 
This is particularly the case for AF; in the aging cohort of well-
chelated individuals, AF may be encountered in otherwise 
apparently healthy hearts. Ventricular arrhythmia is more often 
associated with severe iron overload, although this distinction 
between acute presentations and more chronic incidence of 
arrhythmia has not always been demonstrated.6 There are 
numerous case reports that attest to the association of severe 
siderotic cardiomyopathy and ventricular arrhythmia, as well 
as sudden death, assumed to be arrhythmic in origin. The 
nature of sudden death, by definition, is not clear, but it would 
be consistent with ventricular arrhythmia as the primary cause 
in most instances. In this regard, the toxic cardiomyopathy of 
iron overload would mimic the situation that prevails in other 
nonischemic and ischemic cardiomyopathies, although the 
presence of LV dysfunction would not be expected to be a 
prerequisite for the risk to be elevated in the TM population. 
The potential mechanisms for such enhanced risk include 
increased QT dispersion, autonomic dysfunction, high 
redox potential, and low resting heart rate, and are all to be 
encountered in more or less severe form in patients with TM.

14.3 Causation of Arrhythmia
Animal studies suggest that the toxicity of iron is first 
manifest by changes in electrical conduction and arrhyth-
mia, before the onset of contractile failure.291 Iron-loaded 
myocytes have abnormal action potentials, with decreased 
overshoot and shortened action potential duration compared 
with non–iron-overloaded cells212; these features are likely 
to occur in a patchy distribution at a microscopic level and 
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would be recognized electrical substrates for arrhythmogen-
esis. In the TM patient, such inhomogeneity of action poten-
tial duration would be associated with increased variability 
of repolarization recorded by the ECG. Increased variability 
of the QT duration (QT or JT dispersion) has been noted in 
association with iron overload, and it has been suggested to 
be a marker for the risk of ventricular arrhythmia and sud-
den death, presumed to be caused by malignant ventricular 
arrhythmia.

14.4 Sudden Death
A recent study suggested a high incidence of sudden death 
among young men without clinical evidence of cardiac dis-
ease, with a 27% occurrence rate over a 26-year observation 
period.216 Those who experienced sudden death had ECGs 
that demonstrated a higher degree of QT and JT dispersion 
than the cohort who survived. Other groups have not observed 
such a high incidence of sudden death,11,200,290 although spo-
radic cases are not uncommon in TM. The implications of 
such increased risk would mandate consideration of the use of 
implantable cardioverter-defibrillator devices, a prospect not 
yet considered for the majority of the TM population. There is 
a need to reassess the thalassemia population for the incidence 
of electrocardiographic abnormalities that might increase the 
propensity to malignant ventricular arrhythmia. Careful anal-
ysis of the ECG for QT and JT dispersion plus the consider-
ation of “blind” Holter ECG monitoring may be required for 
subgroups deemed to be at particular risk.

14.5 Treatment of Arrhythmias With Hemodynamic 
Compromise
Once the diagnosis of ventricular arrhythmia has been made, 
treatment is urgent and consists of intense, uninterrupted che-
lation therapy. The evidence, mostly anecdotal, supports the 
use of deferoxamine by intravenous infusion in a continuous 
regimen at doses of up to 75 mg·kg−1·d−1 or more.47,48,292,293 In 
general, patients are supported at these times by concurrent 
treatment with antiarrhythmic medication, which in this con-
text usually consists of an infusion of amiodarone by central 
vein.294 Alternative medication, such as β-blockers and class I 
antiarrhythmic agents, are usually ruled out by hypotension in 
the decompensated TM patient. Adjunctive supportive treat-
ment would include normalization of electrolyte deficiencies, 
particularly potassium (target >4.5 mmol/L), and the infusion 
of magnesium,295,296 plus careful management of associated 
endocrine abnormalities, such as diabetes mellitus, hypopara-
thyroidism, and thyroid disorders. Blood glucose should be 
maintained within appropriate ranges (4.0–6.0 mmol/L) by 
flexible, sliding-scale insulin infusions. In hemodynamically 
compromised patients, direct current defibrillation may be 
required.

For acute AF complicated by hemodynamic compromise, 
for overt HF, or in the context of known severe myocardial 
iron overload (pragmatic definition of T2* <10 ms), the 
immediate approach should be the same as for ventricular 
arrhythmia. In both instances, there should be attention given 
to anticoagulation. There is at least a theoretical potential 
for systemic embolization for these patients because of the 

combined features of the arrhythmia, possibly enlarged atrial 
size, and procoagulant features of the hematologic condition, 
exacerbated in many by asplenia.297–299

14.6 Treatment of Arrhythmias in Ambulatory 
Patients
In many of the aging population of thalassemia patients, even 
in those with current excellent iron status and good ventricular 
function, paroxysmal supraventricular tachycardia and AF 
in particular are frequently encountered in the clinic. The 
precise incidence and associated features of this growing 
population are not yet clear. The management of AF for 
this group should parallel that advocated for the general 
population, in whom AF is seen increasingly more often 
in the aging population, albeit at considerably older ages 
than for the TM group. Strategies for managing paroxysmal 
AF, persistent AF, and established, permanent AF revolve 
around the choices of rhythm control versus acceptance 
of the arrhythmia, with attention directed to rate control. 
Special considerations apply to the TM patient. The general 
population’s attributable risk of systemic embolization 
(mostly manifest by stroke) cannot be assumed to apply. It is 
possible that the risk of stroke in this significantly younger 
group would be increased by virtue of the documented 
prothrombotic tendencies. Permanent anticoagulation would 
need to be considered at an early stage for all but the mildly 
affected group, who experience infrequent, short-lasting 
bouts of AF. For those patients intolerant of antiarrhythmic 
drugs and those whose AF is poorly controlled despite the 
use of such medication, consideration should be given to 
the newer techniques used to control arrhythmia. Ablation 
techniques have evolved into a mainstay of treatment for 
AF patients who fall into the above categories. Currently, 
success rates for AF are quoted as being between 70% and 
80% for the eradication of the arrhythmia, albeit with a 10% 
to 15% likelihood of requiring >1 ablation procedures.300,301 
The pathophysiology of supraventricular tachycardia and AF 
in the TM population may be different, so that equivalent 
success rates seen in the general population of AF patients 
should not be assumed to apply to this special group. On the 
positive side, TM patients are likely to be younger, but to 
counterbalance this, the atria may be much more difficult to 
treat by virtue of the widespread but patchy distribution of 
fibrosis and residual iron deposits. Patients with TM must not 
be denied the possibility of ablation treatment, but caution 
needs to be expressed with regard to longer-term outcome 
until more prospective data become available, most likely 
through registries rather than formal trials.

Although heart block was documented in early series of 
iron-overloaded patients,302 this complication has all but dis-
appeared with better treatment. However, sporadic cases do 
occur and will require the use of pacemakers. Historically, 
this would have meant the loss of the ability to use CMR in 
these individuals; however, manufacturers have now success-
fully produced pacemakers and leads that are compatible for 
use in MR scanners.303 The units carry a specific x-ray opaque 
identification marker to allow confirmation that an MR-safe 
pacemaker is in place before any scan, should the patient’s 
details not be known to the imaging unit.
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14.7 Liver Disease
Liver disease is frequent in TM because of transfusion-trans-
mitted hepatitis and iron overload. Chronic hepatitis C infec-
tion is the most common form of hepatitis infection worldwide, 
whereas infection with hepatitis B virus is more prevalent in 
Asia.304 In many countries, the incidence of both infections in 
thalassemia fell significantly in the 1990s with the screening 
of blood donors and the hepatitis B virus vaccine. Today, the 
residual risk of transfusion-transmitted infection is <2 per 1 
million,305 whereas the prevalence of chronic hepatitis C is high 
in patients born before 1990. Both viral hepatitis and iron over-
load are independently associated with liver fibrosis, cirrhosis, 
end-stage liver disease, and hepatocellular carcinoma. When 
both factors are present, as in TM, the effect is synergistic, 
and in the individual patient, it may be impossible to distin-
guish the role of each. The prevalence of cirrhosis in adult TM 
patients ranges from 10% to 20%.306 Cirrhosis predisposes to 
long-term end-stage liver failure and is the main risk factor for 
hepatocellular carcinoma. Once rare, hepatocellular carcinoma 
now has a rising prevalence in TM.307–310

14.8 Renal Disease
Awareness of underlying renal dysfunction is critical because 
it is a surrogate and independent marker for an increased risk 
of stroke, HF, and myocardial infarction.311 With increasing 
patient survival, renal disease has become more prevalent in 
patients with TM. Various abnormalities of renal function, 
including both glomerular and tubular dysfunction, have been 
reported,312–314 but there are no systemic longitudinal studies. 
A recent cross-sectional study in TM patients has shown an 
abnormally high creatinine clearance in 20.8%, low creatinine 
clearance in 7.8%, hypercalciuria in 28.7%, and albuminuria 
in up to 59% of patients.315 Mechanisms of kidney dysfunction 
are numerous and only partially clarified, but chronic anemia, 
hypoxia, iron, and iron chelators are potentially toxic to renal 
parenchyme.316 Acute kidney injury has also been reported, 

and the probable mechanism in many cases is prerenal from 
sepsis or complications of HF (cardiorenal syndrome) and 
liver failure that affects renal perfusion. Labile iron may also 
lead to acute kidney injury.317,318 Several renal side effects have 
been reported in association with the use of deferoxamine and 
deferasirox. Deferoxamine causes acute renal dysfunction 
at high doses or at normal doses in high-risk patients (those 
with diabetes mellitus, hypertension, or proteinuria; elderly 
patients; and those with underlying renal dysfunction), espe-
cially when given intravenously.319–321 Deferasirox has been 
associated with several renal side effects, including nonpro-
gressive increases in serum creatinine and cases of reversible 
mild or even life-threatening Fanconi syndrome.139,322–327

15. Future Directions
There are ongoing clinical trials that are relevant to treatment 
of cardiac iron overload by deferasirox. One that is relevant 
is the Novartis 2214 trial, with open-label treatment in TM 
patients with combined deferoxamine with deferasirox. In 
addition, clinical trials of new chelators are ongoing. There 
are many unanswered questions in the management and treat-
ment of cardiac disease in TM patients. The most obvious 
general gap relates to the relative paucity of high-quality stud-
ies of large sample sizes to determine treatment preferences. 
However, there is also a need to better understand trends (as 
opposed to absolute values) in iron biomarkers as prognostic 
indicators. The clinical importance of endothelial dysfunction 
in iron overload needs clarifying. The possible clinical value 
of complex, more fragile measurements of iron components 
by CMR, other than hemosiderin (such as ferritin), needs 
evaluation.328 The application of noninvasive iron measure-
ment technology needs to be evaluated in other iron-overload 
conditions after a report of its use in hereditary hemochro-
matosis.329 Finally, a randomized controlled trial of long-term 
amlodipine treatment, which is a new strategy to prevent car-
diac iron loading, is under way.61,330
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